A method for the enumeration of various classes of column-convex polygons
نویسنده
چکیده
2 Abstract. We present a new method that allows to enumerate various classes of column-convex polygons, according to their perimeter and their area. The rst step of this method leads to a functional equation which deenes implicitly the generating function of the class under consideration. The second step consists in solving this equation. We apply systematically our method to all the usual classes of column-convex polygons: thus, we rst reene some already known results for parallelogram polygons and for directed and convex polygons, and then obtain two new results, namely the generating function of column-convex polygons and of directed column-convex polygons.
منابع مشابه
On the Generation and Enumeration of some Classes of Convex Polyominoes
ECO is a method for the recursive generation, and thereby also the enumeration of classes of combinatorial objects. It has already found successful application in recent literature both to the exhaustive generation and to the uniform random generation of various objects classified according to several parameters of interest, as well as to their enumeration. In this paper we extend this approach...
متن کاملTwo generalizations of column-convex polygons
Column-convex polygons were first counted by area several decades ago, and the result was found to be a simple, rational, generating function. In this work we generalize that result. Let a p-column polyomino be a polyomino whose columns can have 1, 2, . . . , p connected components. Then columnconvex polygons are equivalent to 1-convex polyominoes. The area generating function of even the simpl...
متن کاملAsymptotic Behavior of Inflated Lattice Polygons
We study the inflated phase of two dimensional lattice polygons with fixed perimeter N and variable area, associating a weight exp[pA− Jb] to a polygon with area A and b bends. For convex and column-convex polygons, we show that 〈A〉/Amax = 1−K(J)/p̃ 2 + O(ρ), where p̃ = pN ≫ 1, and ρ < 1. The constant K(J) is found to be the same for both types of polygons. We argue that self-avoiding polygons sh...
متن کاملExactly solved models of polyominoes and polygons
This chapter deals with the exact enumeration of certain classes of selfavoiding polygons and polyominoes on the square lattice. We present three general approaches that apply to many classes of polyominoes. The common principle to all of them is a recursive description of the polyominoes which then translates into a functional equation satisfied by the generating function. The first approach a...
متن کاملInversion Relations, Reciprocity and Polyominoes
We derive self-reciprocity properties for a number of polyomino generating functions, including several families of column-convex polygons, three-choice polygons and staircase polygons with a staircase hole. In so doing, we establish a connection between the reciprocity results known to combinatorialists and the inversion relations used by physicists to solve models in statistical mechanics. Fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 154 شماره
صفحات -
تاریخ انتشار 1996